CALCULATION OF ANGULAR IRRADIATION COEFFICIENTS
FOR A THREE-DIMENSIONAL MULTICOUPLED REGION

N. G, Tochilina and Yu. V. Russo UDC 536,33

An algorithm is presented for calculating angular coefficients for isothermal zones of complex
shape in a three-dimensional region involving shadowing,

It has now become common design practice to compute the temperature distributions in instrument racks,
and a considerable part is played in the heat balance in such cases by radiation, which requires a computer
algorithm to define the mutual irradiation coefficients for the components of a three~-dimensional multicoupled
object of complex shape (as far as possible without restriction), which must be universal, i.e., applicable to
a wide range of objects.

At present, these coefficients involving bodies with partial shadowing are determined by experiment [1]
or by Monte Carlo methods [2], although in both cases the accuracy is restricted. Here we present a numeri-
cal method and program for calculating the coefficients for bodies in a three-dimensional region, whose accu-
racy is adequate for engineering purposes. :

We approximate the actual surfaces within and on an instrument section (zones) as areas bounded by con-
vex piecewise-linear surfaces. The division into zones is made in such a way that the entire surface of each
zone may be considered as isothermal and diffusely emitting, namely, gray with a constant degree of black-
ness. This approximation is adequate for engineering purposes and allows one to represent virtually any ob-
ject orovided that the number of zones is large enough., Of course, restriction on the store volume may pre-
vent one from using a very large number of zones, but zones distinguished solely from geometrical considera-
tions may often be combined into piecewise-planar isothermal zones if there are no marked differences in
temperature and blackness, with the result that the total number of zones involved in the thermal calculation
proper may not be very large.

The basic purpose of the calculation is to determine the matrix
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where N is the number of isothermal zones; for each term in (1) we can write that
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This model (a set of planar zones) allows (2) to be replaced by the finite sum
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where nt; and nt, are the numbers of planar zones that simulate the isothermal zones t; and t,, while
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where ¢j and ¢j are the angles between the line joining any two points directly visible one from the other (un-
shadowed) and the normals to these.
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TABLE 1, Angular Coefficients for Surfaces in a Container Enclosing Three Units

i1

)
® 1 n | owm | v | vt ] ovu | o vim | o x | x | x

I 0 0,0387 0 0,4649 0,0766 0,0022 0,2514 0,0225 0,0003 0,1421 0,0003 0,9989

11 0,0387 0 0,0387 0,0766 0,4649 0,0771 0,0225 0,2514 0,0237 0,0021 0,0021 0,9984

111 0 0,0387 0 0,0022 0,0766 0,4940 0,0003 0,0225 0,2632 0,0003 0,1006 0,9984

v 0,3229 0,0532 0,0015 0,2299 0,08570 0,0037 0,1526 0,0324 0,0015 0,1490 0,0016 1,0052
\'% 0,0532 0,3229 0,0532 0,0570 0,2299 0,0582 0,0324 0,1526 0,0327 0,0080 0,007t 1,0072
VI 0,0014 0,0471 0,3020 0,0632 0,0512 0,2504 0,0013 .| 0,0284 0,1691 0,0017 0,1490 1,0048

VII 0,4095 0,0367 0,0004 0,3578 0,0759 0,0035 0 0 0 0,1227 0,0010 1,0076
VIIT| 0,0367 0,4095 0,0367 0,0759 0,3578 0,0758 0 0 0 0,0053 03,0042 1,0020
IX 0,0004 0,0339 0,3774 0,0031 0,0675 0,3965 0 0 0 10,0011 0,1266 1,0066
X 0,3134 0,0063 0,0007 0,4730 0,0255 0,0063 0,1661 0,0071 0,0017 0 0,0065 1,0065
X1 0,0006 0,0045 0,2218 0,0050 0,0227 0,5375 0,0014 0,0057 0,1948 0,0065 0 1,005

The integral (4) can be converted to a curvilinear integral over the boundaries of the unshadowed zones:

- 2nF,

¢
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i

The visibility condition for any two points in the zones is put as

Ax;jcos o + Ay, jcosB; + Az;ycos .0,

(6)
— Ax;;cos o — Ay;;cos B; — Az;;cos y; > 0.
The @j; are calculated by first analyzing whether zone i is visible from zone j; this will not be so if
cos @; cos @; = 1\/(cos@; cosg; = — 1 Ap; 4+ p; =0). (7)

Zones i and j are visible directly from one another if: 1) They are not obscured by other zones; 2) the
lines of intersection of the planes lie outside the edges of the zones; and 3) any two points on the zones are
visible one from the other, namely (8), applies.

Zones i and j are partially visible from one another if the edge of one of them intersects the plane of the
other; then the convexity of the edge means that the intersected zone is divided into not more than two parts.
In that case, the program replaces the given edge of the intersected zone by the part visible from the other
zone,

The numbers of the zones that obscure zones i and j are determined by testing the ray paths, namely,
the part of space containing all lines between the sets of points in zones i and j. One examines only rays
joining all the vertices and the centers of gravity of the two zones. Some other zone (a zone not coincident
with i or j) is an obscuring zone if a ray passes through it.

After the latter test, the coefficient is calculated by numerical integration of (5) if there is no shadowing
or from (4) if zones i and j are partially obscured.

The edges cj and cj are piecewise-linear, so the integral of (5) can be replaced by the following sum of
integrals:

nwi nwji byy bjj

[ N N '
= 5 F, 2‘ j Inr;(dxdxy; + dy,dy;; + dz;dz;s), (8)

i=T ji=1 g,

D,j
jj
where nwi and nwj are the numbers of sides on the edges of zones i and j; and @i, bji, ajjs bjj are the limits

of integration along the sides ii and jj of zones i and j; the inner integrals in (8) are calculated by Simpson's
method,

1087



: + 1
)
v ; v JI 174 V- ‘Q_
X;—**—-ﬁ ‘ [t | ettt | e a
dIROR AN R A 13
—— — o} P,
7= | F~a | F-m—- 74 N
5 J80 s00| ' d20 940 7260 {1780, 125 /5}0 125

Fig. 1. Isothermal surfaces I-XI in a container and
in the units.

If there is partial shadowing, there are regions of discontinuity over the areas F; and F; in the integrand
in (4), which means that the integral of (5) cannot be used; the integral of (4) is replaced by

1 &N cos P1iCOSPus AR AF
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where ni and nj are the numbers of elementary areas in zones i and j visible from one another,

Replacement of (4) by (9) results in an error that decreases as we increase the number of subzones in
zones i and j, i.e., we perform successive approximations and calculate ¢ij by increasing ni and nj successively
until the following condition is met:

il it
abs ( Pijeh — Pijeh ) <Lepsl, (10)

where it is the number of the approximation and eps 1 is the acceptable error.

Two types of decomposition into elementary areas are used in the integration; any zone whose principal
projection is a rectangle is split up via a rectangular grid into equal elements approximating to squares, A
polygon is divided up by its diagonals originating from the vertex of maximum internal angle to give triangles,
each of which is itself split up by a network of lines parallel to the sides to give equal triangles similar to the
initial one,

The geometrical parameter that defines the dimensions of the initial decomposition is the dimension dl
representing the diameter of the average element for the region. The number of divisions for a triangular sub-
region or for the shorter side of a rectangular region is increased by one on going to the next approximation.
The iteration is terminated if (10) is met or if the number of divisions exceeds the acceptable number max n.

The calculation utilizes the reciprocity relation
Pt oF 11 = Qo 1F s 11

which means that only half of the matrix of (1) need be calculated; the correctness is tested by means of a clo-
sure condition implied by the conservation of energy:

The absolute error in calculating a single row in (1) is indicated by
N
AE = abs (1 — E Pu2)- 13)

=1

This algorithm has been used in an ALGOL-60 program for the BESM-6 computer; the input data consist
of lists of numbers of the planar zones constituting the isothermal surfaces, lists of the numbers of the points
describing the edges of the zones in the counterclockwise sense (from the end of the normal), and the array of
coordinates for the zone vertices.

" The performance is illustrated by results for the coefficients within a container enclosing three units;
the internal surface of the container and the surfaces of the units were split up into isothermal surfaces as
shown in Fig, 1, while Table 1 gives the results as the matrix of the angular coefficients,
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NOTATION

Oxyz is the orthogonal coordinate system;

®ij is the generalized mean coefficient for the irradiation of the i-th zone by the j-th zone;
i is the zone area;

ai, Bi,vi are the direction angles of nj, the normal to Fy;

abs(p;) is the length of radius vector p; for zone i;

¢f is the contour of the i-th zone;

ryj is the distance between points in the i-th and j-th zones;

AXjjs Byjs Azij  are the projections of rjj on the x, y, and z axes.
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THERMAL CONDUCTIVITY OF A REINFORCED PLATE

E. Kh. Lokharu and E. A, Tropp UDC 536,21,01:624,07:517.9

Multiscale expansion is used in asymptotic integration of a steady-state heat-conduction problem
for a thin plate of periodic structure; results are presented for the boundary layer near the end.

The singular-perturbation method has proved an efficient means of derving approximate equations for
thin bodies; for instance, the method has been applied to the complete equations in the theory of elasticity to
derive equations for the bending of a plate [1, 2] or rod [3]. A similar method has been used [4] in the theory
of heat conduction for a thermally insulated lateral surface. A method has been given [5, 6] for extending the
technique to conditions of the third kind for small values of the Biot number, An approximation has also been
constructed {7] for the asymptote to a second boundary-value problem for a second-order elliptic equation
of general form for a region in which one dimension is much less than the others.

These studies have envisaged either homogeneous bodies or else bodies in which the parameters vary
slowly in space; on the other hand, applications often involve inhomogeneous media in which the parameters
vary considerably over distances small by comparison with the length of the body. The simplest case is one
where the rapid change is regular, e.g., periodic. Bodies of regular structure are of importance in them-
selves in the description of reinforced structures 8] as well as in the simulation of irregular inhomogeneous
bodies, including random media. The asymptotic methods of [1-3, 5-7] are inadequate for media with rapidly
varying parameters. However, another form of the singular-perturbation method, which is widely used in
nonlinear mechanics [4], is then effective: two-scale expansion. Here we consider a steady-state problem in
the theory of heat conduction for a thin plate reinforced by a rod lattice. It is assumed that the thermal con-
ductivity of the reinforcement differs from that of the matrix material and also that the thermal contact is
ideal.

The latter assumption is unimportant for the method given here and is made only in order to simplify
the expressions,

Physical considerations show that such a reinforced plate can be replaced approximately by a homo-
geneous plate whose thermal conductivity along the rod direction is different from that along the transverse
direction if we are not inferested in the details of the temperature variation over distances small by compari-
son with the size of the plate in plan. Here we provide a justification for this substitution, i.e., we use the
three-dimengional conduction equation to derive a two-dimensional one and construct an algorithm for calculat-
ing the corrections to the two-dimensional temperature distribution. This method gives, in particular,
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